Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1364234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596219

RESUMO

Silver-Russell syndrome (SRS, OMIM, 180860) is a rare genetic disorder with a wide spectrum of symptoms. The most common features are intrauterine growth retardation (IUGR), poor postnatal development, macrocephaly, triangular face, prominent forehead, body asymmetry, and feeding problems. The diagnosis of SRS is based on a combination of clinical features. Up to 60% of SRS patients have chromosome 7 or 11 abnormalities, and <1% show abnormalities in IGF2 signaling pathway genes (IGF2, HMGA2, PLAG1 and CDKN1C). The underlying genetic cause remains unknown in about 40% of cases (idiopathic SRS). We report a novel IGF2 variant c.[-6-2A>G] (NM_000612) in a child with severe IUGR and clinical features of SRS and confirm the utility of targeted exome sequencing in patients with negative results to common genetic analyses. In addition, we report that long-term growth hormone treatment improves height SDS in this patient.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Silver-Russell , Criança , Feminino , Humanos , Síndrome de Silver-Russell/tratamento farmacológico , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/diagnóstico , Hormônio do Crescimento/genética , Herança Paterna , Fenótipo , Hormônio do Crescimento Humano/uso terapêutico , Hormônio do Crescimento Humano/genética , Retardo do Crescimento Fetal/genética , Fator de Crescimento Insulin-Like II/genética
2.
JCI Insight ; 9(6)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516887

RESUMO

Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and postnatal growth retardation. HMGA2 variants are a rare cause of SRS and its functional role in human linear growth is unclear. Patients with suspected SRS negative for 11p15LOM/mUPD7 underwent whole-exome and/or targeted-genome sequencing. Mutant HMGA2 protein expression and nuclear localization were assessed. Two Hmga2-knockin mouse models were generated. Five clinical SRS patients harbored HMGA2 variants with differing functional impacts: 2 stop-gain nonsense variants (c.49G>T, c.52C>T), c.166A>G missense variant, and 2 frameshift variants (c.144delC, c.145delA) leading to an identical, extended-length protein. Phenotypic features were highly variable. Nuclear localization was reduced/absent for all variants except c.166A>G. Homozygous knockin mice recapitulating the c.166A>G variant (Hmga2K56E) exhibited a growth-restricted phenotype. An Hmga2Ter76-knockin mouse model lacked detectable full-length Hmga2 protein, similarly to patient 3 and 5 variants. These mice were infertile, with a pygmy phenotype. We report a heterogeneous group of individuals with SRS harboring variants in HMGA2 and describe the first Hmga2 missense knockin mouse model (Hmga2K56E) to our knowledge causing a growth-restricted phenotype. In patients with clinical features of SRS but negative genetic screening, HMGA2 should be included in next-generation sequencing testing approaches.


Assuntos
Proteína HMGA2 , Síndrome de Silver-Russell , Animais , Humanos , Camundongos , Sequência de Bases , Transtornos do Crescimento/genética , Proteína HMGA2/genética , Fenótipo , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/diagnóstico
3.
BMC Bioinformatics ; 25(1): 66, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347515

RESUMO

BACKGROUND: DNA methylation is one of the most stable and well-characterized epigenetic alterations in humans. Accordingly, it has already found clinical utility as a molecular biomarker in a variety of disease contexts. Existing methods for clinical diagnosis of methylation-related disorders focus on outlier detection in a small number of CpG sites using standardized cutoffs which differentiate healthy from abnormal methylation levels. The standardized cutoff values used in these methods do not take into account methylation patterns which are known to differ between the sexes and with age. RESULTS: Here we profile genome-wide DNA methylation from blood samples drawn from within a cohort composed of healthy controls of different age and sex alongside patients with Prader-Willi syndrome (PWS), Beckwith-Wiedemann syndrome, Fragile-X syndrome, Angelman syndrome, and Silver-Russell syndrome. We propose a Generalized Additive Model to perform age and sex adjusted outlier analysis of around 700,000 CpG sites throughout the human genome. Utilizing z-scores among the cohort for each site, we deployed an ensemble based machine learning pipeline and achieved a combined prediction accuracy of 0.96 (Binomial 95% Confidence Interval 0.868[Formula: see text]0.995). CONCLUSION: We demonstrate a method for age and sex adjusted outlier detection of differentially methylated loci based on a large cohort of healthy individuals. We present a custom machine learning pipeline utilizing this outlier analysis to classify samples for potential methylation associated congenital disorders. These methods are able to achieve high accuracy when used with machine learning methods to classify abnormal methylation patterns.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Impressão Genômica , Metilação de DNA , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Aprendizado de Máquina Supervisionado
4.
Int J Med Sci ; 21(1): 8-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164354

RESUMO

Background: Silver-Russell syndrome (SRS; OMIM #180860) is a clinically and genetically heterogeneous imprinting disorder characterized by prenatal and postnatal growth failure. The aim of this study was to identify the epigenotype-phenotype correlations in these patients using quantitative DNA methylation analysis. Methods: One hundred and eighty-three subjects clinically suspected of having SRS were referred for diagnostic testing by the methylation profiling of H19-associated imprinting center (IC) 1 and imprinted PEG1/MEST regions using methylation-specific high-resolution melting analysis and methylation quantification with the MassARRAY assay. Correlations between quantitative DNA methylation status and clinical manifestations of the subjects according to the Netchine-Harbison (N-H) clinical scoring system for SRS were analyzed. Results: Among the 183 subjects, 90 had a clinical diagnosis of SRS [N-H score ≥ 4 (maximum = 6)] and 93 had an SRS score < 4. Molecular lesions were detected in 41% (37/90) of the subjects with a clinical diagnosis of SRS, compared with 3% (3/93) of those with an N-H score < 4. The IC1 methylation level was negatively correlated with the N-H score. The molecular diagnosis rate was positively correlated with the N-H score. Thirty-one subjects had IC1 hypomethylation (IC1 methylation level <35% by the MassARRAY assay), seven had maternal uniparental disomy 7, and two had pathogenic copy number variants. Among the 90 subjects with an N-H score ≥ 4, the IC1 methylation level was significantly different between those with or without some clinical SRS features, including birth length ≤ 10th centile, relative macrocephaly at birth, normal cognitive development, body asymmetry, clinodactyly of the fifth finger, and genital abnormalities. Conclusions: This study confirmed the suitability of the N-H clinical scoring system as clinical diagnostic criteria for SRS. Quantitative DNA methylation analysis using the MassARRAY assay can improve the detection of epigenotype-phenotype correlations, further promoting better genetic counseling and multidisciplinary management for these patients.


Assuntos
60520 , Síndrome de Silver-Russell , Recém-Nascido , Feminino , Gravidez , Humanos , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/patologia , Metilação de DNA/genética , Fenótipo , Dissomia Uniparental/genética
5.
Horm Res Paediatr ; 97(1): 40-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37019085

RESUMO

INTRODUCTION: Among children born small for gestational age, 10-15% fail to catch up and remain short (SGA-SS). The underlying mechanisms are mostly unknown. We aimed to decipher genetic aetiologies of SGA-SS within a large single-centre cohort. METHODS: Out of 820 patients treated with growth hormone (GH), 256 were classified as SGA-SS (birth length and/or birth weight <-2 SD for gestational age and life-minimum height <-2.5 SD). Those with the DNA triplet available (child and both parents) were included in the study (176/256). Targeted testing (karyotype/FISH/MLPA/specific Sanger sequencing) was performed if a specific genetic disorder was clinically suggestive. All remaining patients underwent MS-MLPA to identify Silver-Russell syndrome, and those with unknown genetic aetiology were subsequently examined using whole-exome sequencing or targeted panel of 398 growth-related genes. Genetic variants were classified using ACMG guidelines. RESULTS: The genetic aetiology was elucidated in 74/176 (42%) children. Of these, 12/74 (16%) had pathogenic or likely pathogenic (P/LP) gene variants affecting pituitary development (LHX4, OTX2, PROKR2, PTCH1, POU1F1), the GH-IGF-1 or IGF-2 axis (GHSR, IGFALS, IGF1R, STAT3, HMGA2), 2/74 (3%) the thyroid axis (TRHR, THRA), 17/74 (23%) the cartilaginous matrix (ACAN, various collagens, FLNB, MATN3), and 7/74 (9%) the paracrine chondrocyte regulation (FGFR3, FGFR2, NPR2). In 12/74 (16%), we revealed P/LP affecting fundamental intracellular/intranuclear processes (CDC42, KMT2D, LMNA, NSD1, PTPN11, SRCAP, SON, SOS1, SOX9, TLK2). SHOX deficiency was found in 7/74 (9%), Silver-Russell syndrome in 12/74 (16%) (11p15, UPD7), and miscellaneous chromosomal aberrations in 5/74 (7%) children. CONCLUSIONS: The high diagnostic yield sheds a new light on the genetic landscape of SGA-SS, with a central role for the growth plate with substantial contributions from the GH-IGF-1 and thyroid axes and intracellular regulation and signalling.


Assuntos
Nanismo , Hormônio do Crescimento Humano , Síndrome de Silver-Russell , Criança , Recém-Nascido , Humanos , Fator de Crescimento Insulin-Like I , Transtornos do Crescimento/genética , Transtornos do Crescimento/diagnóstico , Síndrome de Silver-Russell/genética , Idade Gestacional , Recém-Nascido Pequeno para a Idade Gestacional , Hormônio do Crescimento Humano/genética , Estatura/genética , Proteína de Homoeobox de Baixa Estatura
6.
Artigo em Inglês | MEDLINE | ID: mdl-37928887

RESUMO

Background: Myoclonus dystonia syndrome typically results from autosomal dominant mutations in the epsilon-sarcoglycan gene (SGCE) via the paternally expressed allele on chromosome 7q21. There is evidence that deep brain stimulation (DBS) is beneficial for this genotype, however, there are few prior case reports on DBS for myoclonus dystonia syndrome secondary to other confirmed genetic etiologies. Case Report: A 20-year-old female with concomitant Russell-Silver syndrome and myoclonus dystonia syndrome secondary to maternal uniparental disomy of chromosome 7 (mUPD7) presented for medically refractory symptoms. She underwent DBS surgery targeting the bilateral globus pallidus interna with positive effects that persisted 16 months post-procedure. Discussion: We present a patient with the mUPD7 genotype for myoclonus dystonia syndrome who exhibited a similar, if not superior, response to DBS when compared to patients with other genotypes. Highlights: This report outlines the first described case of successful deep brain stimulation treatment for a rare genetic variant of myoclonus dystonia syndrome caused by uniparental disomy at chromosome 7. These findings may expand treatment options for patients with similar conditions.


Assuntos
Estimulação Encefálica Profunda , Distonia , Mioclonia , Síndrome de Silver-Russell , Feminino , Humanos , Adulto Jovem , Adulto , Síndrome de Silver-Russell/genética , Distonia/complicações , Distonia/genética , Distonia/terapia , Dissomia Uniparental , Mioclonia/complicações , Mioclonia/genética , Mioclonia/terapia , Estimulação Encefálica Profunda/métodos
7.
Mol Genet Genomic Med ; 11(12): e2264, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37519217

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome and Silver-Russel syndrome are two imprinting disorders caused by opposite molecular alterations in 11p15.5. With the current diagnostic tests, their molecular diagnosis is challenging due to molecular heterogeneity and mosaic occurrence of the most frequent alterations. As the determination of precise (epi)genotype of patients is relevant as the basis for a personalized treatment, different approaches are needed to increase the sensitivity of diagnostic testing of imprinting disorders. METHODS: We established methylation-specific droplet digital PCR approaches (MS-ddPCR) for the two imprinting centers in 11p15.5, and analyzed patients with paternal uniparental disomy of chromosome 11p15.5 (upd(11)pat) and other imprinting defects in the region. The results were compared to those from MS-MLPA (multiplex ligation-dependent probe amplification) and MS-pyrosequencing. RESULTS: MS-ddPCR confirmed the molecular alterations in all patients and the results matched well with MS-MLPA. The results of MS-pyrosequencing varied between different runs, whereas MS-ddPCR results were reproducible. CONCLUSION: We show for the first time that MS-ddPCR is a reliable and easy applicable method for determination of MS-associated changes in imprinting disorders. It is therefore an additional tool for multimethod diagnostics of imprinting disorders suitable to improve the diagnostic yield.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Metilação de DNA , Impressão Genômica , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Reação em Cadeia da Polimerase Multiplex
8.
Cytogenet Genome Res ; 163(1-2): 32-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37369188

RESUMO

Optical genome mapping (OGM) appears as a new tool for matching standard cytogenetic methods (karyotype and microarray) into a single assay. The chromosomal region 11p15.5 harbours two differentially methylated regions, the imprinting centre regions 1 and 2 (ICR1, ICR2). Disturbances in both regions alter human growth and are associated with two imprinting disorders, Beckwith-Wiedemann (BWS) and Silver-Russell syndromes. Herein, we present a prenatal case with a triplication in 11p15.5, including the H19/IGF2 imprinted region, detected by microarray and OGM. A 30-year-old pregnant woman of 17 weeks of gestation was referred for prenatal karyotype and microarray study because of increased nuchal translucency, short femur, megabladder, hyperechogenic bowel, and renal ectasia. Microarray, OGM, and MS-MLPA were performed, and a tandem cis-triplication in 11p15.5 and hypermethylation of the ICR1 region, compatible with BWS was detected. OGM, with its power to detect all classes of structural variants, including copy number variants, at a higher resolution than traditional cytogenetic methods can play a significant role in prenatal care and management as a next-generation cytogenomic tool. This study further supports the hypotheses that the amplification/duplication-triplication of the H19/IGF2 region could be related to BWS if it is of paternal origin.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Gravidez , Feminino , Humanos , Adulto , Impressão Genômica , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Metilação de DNA/genética , Síndrome de Silver-Russell/genética , Mapeamento Cromossômico , Fator de Crescimento Insulin-Like II/genética
9.
Sultan Qaboos Univ Med J ; 23(2): 264-268, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37377828

RESUMO

Silver-Russell Syndrome (SRS) is a disorder that is primarily characterised by intrauterine growth restriction which may occur asymmetrically or in whole, leading to a fetus being small relative to its gestational age. We present a female infant (proband) born in 2018 at a tertiary hospital in Muscat, Oman, with severe congenital anomalies. The proband carried a >25Mb duplication of the chromosomal 11p15-11pter locus of chromosome 13; creating a derivative chromosome 13 (der[13]) and was reported as 46,XX,der(13)add(11p15-11pter). A methylation-sensitive assay confirmed a diagnosis of SRS. Although the prognosis for SRS patients is generally good, the proband presented with a clinically severe phenotype culminating in death at the age of nine months. To the best of the authors' knowledge, this is the first report of a derivative chromosome 13 with a duplicated 11p15 locus in a patient with SRS.


Assuntos
Síndrome de Silver-Russell , Humanos , Feminino , Pré-Escolar , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Metilação de DNA , Cromossomos Humanos Par 13/genética , Retardo do Crescimento Fetal , Fenótipo
10.
Endokrynol Pol ; 74(3): 285-293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335065

RESUMO

INTRODUCTION: Silver-Russell syndrome (SRS) is characterized by clinical and genetic heterogeneity. SRS is the only disease entity associated with (epi)genetic abnormalities of 2 different chromosomes: 7 and 11. In SRS, the 2 most frequent molecular abnormalities are hypomethylation (loss of methylation) of region H19/IGF2:IG-DMR on chromosome 11p15.5 (11p15 LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Therapy with recombinant human growth hormone (rhGH) is implemented to increase body height in children with SRS. The effect of the administered rhGH on height, weight, body mass index (BMI), body composition, and height velocity in patients with SRS during 3 years of rhGH therapy was analysed. MATERIAL AND METHODS: 31 SRS patients (23 with 11p15 LOM, 8 with upd(7)mat) and 16 patients small for gestational age (SGA) as a control group were diagnosed and followed up in The Children's Memorial Health Institute. Patients were eligible for the 2 Polish rhGH treatment programmes [for patients with SGA or with growth hormone deficiency (GHD)]. Anthropometric parameters were collected in all patients. Body composition using bioelectrical impedance was measured in 13 SRS and 14 SGA patients. RESULTS: Height, weight, and weight for height (SDS) at baseline of rhGH therapy were lower in SRS patients than in the SGA control group: -3.3 ± 1.2 vs. -2.6 ± 06 (p = 0.012), -2.5 vs. -1.9 (p = 0.037), -1.7 vs. -1.1 (p = 0.038), respectively. Height SDS was increased from -3.3 ± 1.2 to -1.8 ± 1.0 and from -2.6 ± 0.6 to -1.3 ± 0.7 in the SRS and SGA groups, respectively. Patients with 11p15 LOM and upd(7) mat achieved similar height, 127.0 ± 15.7 vs. 128.9 ± 21.6 cm, and -2.0 ± 1.3 vs. -1.7 ± 1.0 SDS, respectively. Fat mass percentage decreased in SRS patients from 4.2% to 3.0% (p < 0.05) and in SGA patients from 7.6% to 6.6% (p < 0.05). CONCLUSIONS: Growth hormone therapy has a positive influence on the growth of SRS patients. Regardless of molecular abnormality type (11p15 LOM vs. upd(7)mat), height velocity was similar in SRS patients during 3 years of rhGH therapy.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Silver-Russell , Criança , Feminino , Humanos , Síndrome de Silver-Russell/tratamento farmacológico , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Polônia , Metilação de DNA , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/genética , Hormônio do Crescimento Humano/uso terapêutico , Composição Corporal
11.
Prenat Diagn ; 43(6): 724-726, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165482

RESUMO

We report a case of maternally inherited autosomal dominant PLAG-1 related Silver Russell syndrome (SRS) in a fetus with IUGR and a mother who had growth and feeding problems in early life, dextrocardia and an atrio-ventricular septal defect. Amniocentesis was performed due to marked intra-uterine growth restriction (IUGR). The array was normal. Whole exome sequencing (WES) revealed a maternally inherited heterozygous likely pathogenic variant in PLAG1 (NM_002655.3): c.402delT p.(Gly135Aspfs*94). This variant has not been reported previously. PLAG1 pathogenic variants are associated with autosomal dominant Silver Russell syndrome, which fits with the clinical phenotypes of both fetus and mother. PLAG1 variants have previously been reported post-natally in Silver Russell syndrome, but the phenotype tends to be milder than in 11p15.5 methylation-related cases with fewer physical features. Although cardiac anomalies are uncommon in SRS, they have been previously reported. To our knowledge, dextrocardia has not been previously associated with SRS and there were no other potential causative genetic variants found. This report aims to highlight this rare type of SRS as a cause of IUGR.


Assuntos
Dextrocardia , Síndrome de Silver-Russell , Humanos , Feminino , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Metilação de DNA , Herança Materna , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/genética , Fenótipo , Feto , Dextrocardia/genética
12.
Eur J Pediatr ; 182(6): 2607-2614, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36947243

RESUMO

Genetic syndromes often show facial features that provide clues for the diagnosis. However, memorizing these features is a challenging task for clinicians. In the last years, the app Face2Gene proved to be a helpful support for the diagnosis of genetic diseases by analyzing features detected in one or more facial images of affected individuals. Our aim was to evaluate the performance of the app in patients with Silver-Russell syndrome (SRS) and Prader-Willi syndrome (PWS). We enrolled 23 pediatric patients with clinically or genetically diagnosed SRS and 29 pediatric patients with genetically confirmed PWS. One frontal photo of each patient was acquired. Top 1, top 5, and top 10 sensitivities were analyzed. Correlation with the specific genetic diagnosis was investigated. When available, photos of the same patient at different ages were compared. In the SRS group, Face2Gene showed top 1, top 5, and top 10 sensitivities of 39%, 65%, and 91%, respectively. In 41% of patients with genetically confirmed SRS, SRS was the first syndrome suggested, while in clinically diagnosed patients, SRS was suggested as top 1 in 33% of cases (p = 0.74). Face2Gene performed better in younger patients with SRS: in all patients in whom a photo taken at a younger age than the age of enrollment was available, SRS was suggested as top 1, albeit with variable degree of probability. In the PWS group, the top 1, top 5, and top 10 sensitivities were 76%, 97%, and 100%, respectively. PWS was suggested as top 1 in 83% of patients genetically diagnosed with paternal deletion of chromosome 15q11-13 and in 60% of patients presenting with maternal uniparental disomy of chromosome 15 (p = 0.17). The performance was uniform throughout the investigated age range (1-15 years). CONCLUSION: In addition to a thorough medical history and detailed clinical examination, the Face2Gene app can be a useful tool to support clinicians in identifying children with a potential diagnosis of SRS or PWS. WHAT IS KNOWN: • Several genetic syndromes present typical facial features that may provide clues for the diagnosis. • Memorizing all syndromic facial characteristics is a challenging task for clinicians. WHAT IS NEW: • Face2Gene may represent a useful support for pediatricians for the diagnosis of genetic syndromes. • Face2Gene app can be a useful tool to integrate in the diagnostic path of patients with SRS and PWS.


Assuntos
Síndrome de Prader-Willi , Síndrome de Silver-Russell , Humanos , Criança , Lactente , Pré-Escolar , Adolescente , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Família , Computadores , Cromossomos Humanos Par 15/genética
13.
PLoS One ; 18(1): e0279745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662731

RESUMO

Silver-Russell syndrome (SRS) is a rare imprinting disorder characterized by prenatal and postnatal growth retardation. The two principal causes of SRS are loss of methylation on chromosome 11p15 (11p15 LOM) and maternal uniparental disomy of chromosome 7 (UPD(7)mat). Knowledge of the neuropsychological profile of SRS remains sparse and incomplete even if several difficulties related to attention and learning have been reported both in the literature and by patients with SRS. These difficulties could be the result of troubles in different cognitive domains, but also of executive dysfunction. Nevertheless, executive functioning has never been investigated, even though executive functions play an essential role in psychological development, and are extensively involved in daily life. The present study explored the executive functioning of individuals with SRS due to UPD(7)mat or 11p15 LOM. A battery of executive tasks assessing cognitive flexibility, inhibitory control, and working memory, together with a task assessing sustained attention, was administered to 19 individuals with SRS (13-39 years) and 19 healthy controls. The Behavior Rating Inventory of Executive Function was also completed by the participants' families. The results showed that participants with SRS had similar performance (z-scores) to our controls, in a context of normal intellectual efficiency. Group comparisons with Bayesian statistics showed a single difference between the 11p15 LOM and control groups: the completion time for part A of the Trail Making Test appeared to be longer in the 11p15 LOM group than in the control group. However, at the clinical level, several participants with SRS had clinically significant scores on various measures of EFs. Thus, the cognitive phenotype of SRS did not appear to be characterized by executive dysfunction, but individuals with SRS could be at high risk of developing executive dysfunction or attention-deficit/hyperactivity disorder. These results provide new insights into the neuropsychological profile of individuals with SRS.


Assuntos
Síndrome de Silver-Russell , Feminino , Gravidez , Humanos , Síndrome de Silver-Russell/genética , Função Executiva , Teorema de Bayes , Metilação , Dissomia Uniparental , Metilação de DNA , Impressão Genômica , Fenótipo
14.
Curr Pediatr Rev ; 19(2): 157-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35293298

RESUMO

BACKGROUND: Silver-Russell syndrome (SRS) is a developmental disorder involving extreme growth failure, characteristic facial features and underlying genetic heterogeneity. As the clinical heterogeneity of SRS makes diagnosis a challenging task, the worldwide incidence of SRS could vary from 1:30,000 to 1:100,000. Although various chromosomal, genetic, and epigenetic mutations have been linked with SRS, the cause had only been identified in half of the cases. MATERIAL AND METHODS: To have a better understanding of the SRS clinical presentation and mutation/ epimutation responsible for SRS, a systematic review of the literature was carried out using appropriate keywords in various scientific databases (PROSPERO protocol registration CRD42021273211). Clinical features of SRS have been compiled and presented corresponding to the specific genetic subtype. An attempt has been made to understand the recurrence risk and the role of model organisms in understanding the molecular mechanisms of SRS pathology, treatment, and management strategies of the affected patients through the analysis of selected literature. RESULTS: 156 articles were selected to understand the clinical and molecular heterogeneity of SRS. Information about detailed clinical features was available for 228 patients only, and it was observed that body asymmetry and relative macrocephaly were most prevalent in cases with methylation defects of the 11p15 region. In about 38% of cases, methylation defects in ICRs or genomic mutations at the 11p15 region have been implicated. Maternal uniparental disomy of chromosome 7 (mUPD7) accounts for about 7% of SRS cases, and rarely, uniparental disomy of other autosomes (11, 14, 16, and 20 chromosomes) has been documented. Mutation in half of the cases is yet to be identified. Studies involving mice as experimental animals have been helpful in understanding the underlying molecular mechanism. As the clinical presentation of the syndrome varies a lot, treatment needs to be individualized with multidisciplinary effort. CONCLUSION: SRS is a clinically and genetically heterogeneous disorder, with most of the cases being implicated with a mutation in the 11p15 region and maternal disomy of chromosome 7. Recurrence risk varies according to the molecular subtype. Studies with mice as a model organism have been useful in understanding the underlying molecular mechanism leading to the characteristic clinical presentation of the syndrome. Management strategies often need to be individualized due to varied clinical presentations.


Assuntos
Síndrome de Silver-Russell , Humanos , Animais , Camundongos , Camundongos Endogâmicos ICR , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/terapia , Dissomia Uniparental , Impressão Genômica
15.
J Med Genet ; 60(2): 134-136, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35772847

RESUMO

BACKGROUND: Imprinting centre 2 (IC2) in the chromosomal region 11p15.5 regulates the monoallelic expression of imprinted genes by differential methylation of paternal and maternal chromosomes. Copy number variants in IC2 are associated with Beckwith-Wiedemann syndrome and Silver-Russell syndrome (SRS). Clinical outcome of IC2 deletions seems to depend on the parental origin of the chromosome, deletion size and inclusion or exclusion of enhancer and promoter regions. RESULTS: A paternally inherited 132 bp deletion within the KCNQ1OT1 gene was found in a proband with an SRS clinical phenotype. The patient's father and paternal grandmother, who both carry the deletion on their maternal chromosome, are unaffected. Review of other IC2 deletions and their associated clinical presentation was useful in understanding the genetic-phenotypic correlation. CONCLUSION: Only six cases have been reported with deletions involving exclusively IC2, one being identical to our proband's 132 bp deletion. Our study, which is based on more extensive segregation data than the previous 132 bp deletion report, confirms the association of this deletion with growth restriction when paternally inherited. Remarkably, even though our patient has the same deletion, he has more pronounced phenotypic features; our findings thus suggest that some degree of clinical variability may be associated with this loss.


Assuntos
Síndrome de Beckwith-Wiedemann , RNA Longo não Codificante , Síndrome de Silver-Russell , Humanos , Masculino , Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA/genética , Impressão Genômica/genética , Fenótipo , Síndrome de Silver-Russell/genética , Feminino , RNA Longo não Codificante/genética
16.
Elife ; 112022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441651

RESUMO

Dysregulation of the imprinted H19/IGF2 locus can lead to Silver-Russell syndrome (SRS) in humans. However, the mechanism of how abnormal H19/IGF2 expression contributes to various SRS phenotypes remains unclear, largely due to incomplete understanding of the developmental functions of these two genes. We previously generated a mouse model with humanized H19/IGF2 imprinting control region (hIC1) on the paternal allele that exhibited H19/Igf2 dysregulation together with SRS-like growth restriction and perinatal lethality. Here, we dissect the role of H19 and Igf2 in cardiac and placental development utilizing multiple mouse models with varying levels of H19 and Igf2. We report severe cardiac defects such as ventricular septal defects and thinned myocardium, placental anomalies including thrombosis and vascular malformations, together with growth restriction in mouse embryos that correlated with the extent of H19/Igf2 dysregulation. Transcriptomic analysis using cardiac endothelial cells of these mouse models shows that H19/Igf2 dysregulation disrupts pathways related to extracellular matrix and proliferation of endothelial cells. Our work links the heart and placenta through regulation by H19 and Igf2, demonstrating that accurate dosage of both H19 and Igf2 is critical for normal embryonic development, especially related to the cardiac-placental axis.


Assuntos
Síndrome de Silver-Russell , Animais , Feminino , Camundongos , Gravidez , Modelos Animais de Doenças , Células Endoteliais , Fator de Crescimento Insulin-Like II/genética , Placenta , Placentação , Síndrome de Silver-Russell/genética , Histonas/metabolismo
17.
Orv Hetil ; 163(45): 1775-1781, 2022 Nov 06.
Artigo em Húngaro | MEDLINE | ID: mdl-36335483

RESUMO

"Characterized by both intrauterine and postnatal growth retardation, and consequent small stature, Silver­Russell syndrome is associated with typical minor anomalies (relative macrocephalia, protruding forehead, downturned corners of mouth, micrognathia, low set ears, facial, skeletal and limb asymmetry) and findings involving mainly the endocrine system. The molecular background of the syndrome is complex, but it is most often caused by the involvement of critical regions of chromosome 11 and/or chromosome 7. Beside the molecular diagnosis, the Netchine­Harbison clinical scoring system aims to contribute to the successful diagnosis of Silver­Russell syndrome. Although Silver­Russell syndrome is mostly sporadic, in our case report we present an extremely rare familial accumulation, where three of four siblings are affected by Silver­Russell syndrome. Early diagnosis is important to initiate adequate feeding and nutritional guidance, enhance early development and start growth hormone therapy as soon as possible. We would like to emphasize that management and long-term follow-up is crucial to prevent potential complications and treat specific issues appropriately."


Assuntos
Síndrome de Silver-Russell , Humanos , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Face
18.
Clin Epigenetics ; 14(1): 143, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345041

RESUMO

BACKGROUND: Imprinting disorders, which affect growth, development, metabolism and neoplasia risk, are caused by genetic or epigenetic changes to genes that are expressed from only one parental allele. Disease may result from changes in coding sequences, copy number changes, uniparental disomy or imprinting defects. Some imprinting disorders are clinically heterogeneous, some are associated with more than one imprinted locus, and some patients have alterations affecting multiple loci. Most imprinting disorders are diagnosed by stepwise analysis of gene dosage and methylation of single loci, but some laboratories assay a panel of loci associated with different imprinting disorders. We looked into the experience of several laboratories using single-locus and/or multi-locus diagnostic testing to explore how different testing strategies affect diagnostic outcomes and whether multi-locus testing has the potential to increase the diagnostic efficiency or reveal unforeseen diagnoses. RESULTS: We collected data from 11 laboratories in seven countries, involving 16,364 individuals and eight imprinting disorders. Among the 4721 individuals tested for the growth restriction disorder Silver-Russell syndrome, 731 had changes on chromosomes 7 and 11 classically associated with the disorder, but 115 had unexpected diagnoses that involved atypical molecular changes, imprinted loci on chromosomes other than 7 or 11 or multi-locus imprinting disorder. In a similar way, the molecular changes detected in Beckwith-Wiedemann syndrome and other imprinting disorders depended on the testing strategies employed by the different laboratories. CONCLUSIONS: Based on our findings, we discuss how multi-locus testing might optimise diagnosis for patients with classical and less familiar clinical imprinting disorders. Additionally, our compiled data reflect the daily life experiences of diagnostic laboratories, with a lower diagnostic yield than in clinically well-characterised cohorts, and illustrate the need for systematising clinical and molecular data.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Impressão Genômica , Metilação de DNA , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Transtornos do Crescimento/genética , Técnicas e Procedimentos Diagnósticos
19.
Gac Med Mex ; 158(4): 202-209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36256576

RESUMO

INTRODUCTION: Epigenetic and genomic imprinting alterations of the 11p15.5 region cause excessive or deficient growth, which result in Beckwith-Wiedemann syndrome (BWS) or Silver-Russell syndrome (SRS), respectively. OBJECTIVE: To evaluate the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) methylation analysis technique in the diagnosis of BWS and SRS. METHODS: 11p15.5 methylation and variants were evaluated in patients with clinical diagnosis of BWS and SRS using the MS-MLPA technique in peripheral blood DNA. RESULTS: Paternal uniparental disomy and loss of maternal IC2 methylation were identified in two patients with BWS who had omphalocele and macroglossia, respectively. Paternal IC1hypomethylation was recorded in two patients with SRS of classic phenotype. CONCLUSIONS: Adequate genotype-phenotype correlation was observed with the methylation defects that were identified, which confirms the usefulness of MLPA as a first-line study in patients diagnosed with BWS and SRS.


INTRODUCCIÓN: Las alteraciones epigenéticas y genómicas de la región improntada 11p15.5 producen crecimiento excesivo o deficiente, que se manifiesta como síndrome de Beckwith-Wiedemann o síndrome de Silver-Russell, respectivamente. OBJETIVO: Evaluar la técnica de análisis de metilación MLPA (MS-MLPA, methylation-specific multiplex ligation-dependent probe amplification) en el diagnóstico de los síndromes de Beckwith-Wiedemann y de Silver-Russell. MÉTODOS: Se evaluó la metilación y las variantes de 11p15.5 en pacientes con diagnóstico clínico de síndrome de Beckwith-Wiedemann y síndrome de Silver-Russell mediante la técnica MS-MLPA en ADN de sangre periférica. RESULTADOS: Se identificó disomía uniparental paterna y pérdida de metilación del IC2 materno en dos pacientes con síndrome de Beckwith-Wiedemann, quienes presentaron onfalocele y macroglosia, respectivamente. Se registró hipometilación paterna del IC1 en dos pacientes con síndrome de Silver-Russell de fenotipo clásico. CONCLUSIONES: Se observó adecuada correlación genotipo-fenotipo con los defectos de metilación encontrados, lo que confirma la utilidad del MLPA como estudio de primera línea en pacientes con diagnóstico de síndrome de Beckwith-Wiedemann y síndrome de Silver-Russell.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Metilação de DNA , Impressão Genômica
20.
Genes (Basel) ; 13(10)2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36292759

RESUMO

Silver-Russell syndrome is an imprinting disorder characterised by pre- and post-natal growth retardation and several heterogeneous molecular defects affecting different human genomic loci. In the majority of cases, the molecular defect is the loss of methylation (LOM) of the H19/IGF2 differentially methylated region (DMR, also known as IC1) at the telomeric domain of the 11p15.5 imprinted genes cluster, which causes the altered expression of the growth controlling genes, IGF2 and H19. Very rarely, the LOM also affects the KCNQ1OT1 DMR (also known as IC2) at the centromeric domain, resulting in an SRS phenotype by an unknown mechanism. In this study, we report on two cases with SRS features and a LOM of either IC1 and IC2. In one case, this rare and complex epimutation was secondary to a de novo mosaic in cis maternal duplication, involving the entire telomeric 11p15.5 domain and part of the centromeric domain but lacking CDKN1C. In the second case, neither the no 11p15.5 copy number variant nor the maternal-effect subcortical maternal complex (SCMC) variant were found to be associated with the epimutation, suggesting that it arose as a primary event. Our findings further add to the complexity of the molecular genetics of SRS and indicate how the LOM in both 11p15.5 DMRs may result from different molecular mechanisms.


Assuntos
Síndrome de Silver-Russell , Humanos , Síndrome de Silver-Russell/genética , Impressão Genômica , Metilação de DNA/genética , Fenótipo , Variações do Número de Cópias de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...